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e CFD-based model -

e Experimental & Model Results

* Introduction of Kinetics-based mod




Excavation and Delivery of Planetary
Regolith for ISRU Systems

Excavator Delivers
Regolith to Trough

Regolith is
Transferred from
the Trough to
Regolith Supply Bin

&

Spent Regolith is
Conveyed out of the ISRU ‘

Reactor

Regolith is Conveyed
to an ISRU Reactor

e

Regolith is Chemically
Reacted to Yield Useful
Products Like Oxygen and
Metals such as Titanium

J

E.g., Carbothermal,
Hydrogen Reduction,

Molten Oxide Electrolysis
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Comparison of Regolith Delivery Systems
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robust

Cons

Moving parts ->Wear concerns
Reconfiguration and Sprawl
Jamming concern

Power and cooling of motor

- Non-mechanical
(Pneumatic Conveyor)

Pros
» Compact
» Improved performancein 1/6 g

> System commonality — reuse of
ISRU fluidization components

Complexity

Cooling of regolith

Wear due to sandblasting
Requires size sorting

Compressor is required if not
already used by ISRU system




orovide a unique
metric analysis of the

analytical model are a powerful tool to
understand the system behavior

- =

The ISRU modeling tool currently includes an
auger-based feed system.

e Pneumatic feed system analysis and model have
been missing from the ISRU Model Tool




Pneumatic Regolith Feed System —
Model Architeture
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Pneumatic Regolith Feed System
I\/Iodel Description & Sequence

Mechanical model based on Static Forces of regolith given
Regolith per E a regolith per batch requirement and buffer time

batch GRC-developed model

. Sized based on regolith batch size from reduction reactor
Gas-Solid

Separation > .
& Venturi Eductor:

* Solid-gas flow model based on mass and momentum
balance

Given batch size and time to transfer the solids, it

calculates solid and gas flow rate required
| Riser:
I flowrate « Solid-gas flow model based on mass and momentum

& balance
| Given the gas and solid flow rate calculated from eductor
*  _model, it calculated conduit requirements
.+ Verifies gas and solid flow rates from eductor
4 Gas-Solid Separation:

) *  Model based on cyclone and particulate filter to remove
Riser solids from gas

A GRC-developed cyclone mode
|

Gas-Solid

Given gas and solid flow rates (from eductor or adjusted
from riser model), i culates cyclone dimensions

5. Compressor:
. Model compressor from manufacturer performance curves

based on eductor requirement for gas flow and delta-P.

Compares eductor and riser gas flow and pressure
requirements, uses highest requirements to size
Compressor compressor

6. Valve:

. Use manufacturer specifications
I_ Gas flowrate «  Given gas pressure and solid flow rate, it calculate valves
pressure dimensions and requirements.




TWO-PHASE FLOW MODELING: GAS AND DILUTE
SUSPENSION FORMED BY PARTICLES

Mtasswsﬁailance , Key assumptions:

T ke e Incompressible fluid

e Solid phase diluted in the fluid
QENE

Contmuity bakince e Momentum balance based on

saet averaged mixture velocity

* Two empirical parameters need to

be fitted

Particle Flux

(L= ug )+ V- [(Vu+Vu' )]+ g

Mixture momentum balance




Two-Phase Flow Modeling Result

Particle mass fraction

0.025 m/ Particle Velocity (m/s)
Hes mis 0.025 m/s

e

2—%.5 m/s 2.5m/s

eductor eductor




— Maximum regolith flow rate is
reached at relative low flow
rates i

Solid mass flow (kg/s)

0.02

— Model predicts maximum 0.00
solid transport rate at flow
rates below manufacturer’s
recommendation

!
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Pneumatic Fee
Experimenta

Data
Acquisition

Pres sure
Regulator

Pres sure

eductor
Regulator

balance
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Experimental Results

proportional to hopper
pressure

Solid mass flow (kg/s)

e Two-phase flow model agrees
with experimental data | e

0.02 \
— Boundary conditions for model 0.00
and experimental test are 0.0 10 2.0 3.0 4.0 >0 6.0
. Gas flow (scfm)
different e MIODEL ==@=5 psig =®=15 psig

Hopper pressure

— One major model assumption,
incompressible fluid, is not meet

by real system



alance..

Mass B

Solid-Gas Flow Modeling
Kinetic Theory Approach

A

Key assumptions:

e Compressible fluid
Solid phase diluted or concentrated
in the fluid phase
Momentum balance based on
individual phases

* Empirical parameters not need to
~ be fitted

__* Flexible model
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e Work in prc')gress'
* Modelis in debugging phase




Conclusions

odel predicts solid transfer rate is inversely

proportional to gas flow rate on the eductor

e At the system level, this findings result in a ree
of gas flow and pressure requirements to

— Lower power and mass than previously anticipated

 This is a work in progress...






